
Lecture 5

New topic thermal history (next New
lectures) :

· Thermal history , evolution of
matter and radiation

,
CMB

,
BBN

(briefly Baryogenesis)

This lecture :

· Review (distances and FRW(

· Equilibrium statistical physics
· Temperature of CMB

· Boltzmann equation



· Review

Epochs of the Universe :
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· Equilibrium statistical physics
The goal of the nextlew lectures
is understand hour various matterto

components of the universe (photons,
electrons, protons <

nectious
C
neutrinos

and some light atoms) exchange
energy and come in and out of
thermal equilibrium.

Full description is given by the

density matrix:

- = texp(-tMii
↓ ↳ conserved

chemical numbers
potentials

In
many cases

,
once in equilibrium ,

we can describe components as

free particles E
described ay

distribution in momentum space.



· Note that really free particles
never thermalize

N = /dp n(p)

p = 3/dp E(p) n(P)

qt number of degrees of freedom.

n(p) + thermal distributionfunction
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In the relativistic limit we can

compute N and & analytically
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It is common to define the

"effective number of species"

&E + E
ernions

:

p = #2 gx

· Entropy
For Mo we have

U = TS - PV
For V -> comoving (not physical

s = = PE
p = P/3



· Non-relativistic limit
2
P

M> ↑
,

m- >> ↑ E
E = Mi +

2M ;
-~°

In can be important if non-relativistic

Ni = Gi(+ )36
(derive- ? ]

Pi = Gimi Ni

Pi = giNiPeep



· CM .B Temperature

CMB played (and is playing) a

very important role in development of
cosmology (see Collo hium by Peebles) .q
We will S tudy it in details

,
but

now we just want to estimate its

temperature.

If radiation dominates the universe

H = (&G Brad
Ye 13
I --

Mo

Prad= =2 gx4

Mo =()Yu
where

ge is
the number of species

that dominate in the radiation epoch .
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This equation is rather precise at

Teg .

When Pm-Pz Land earlier)
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This is in the spirit of early days
estimates in BigKang theory . Now

we can do much better
I
but being

able to get order of magnitude estimates

easily is very important8
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Vectors :

photon + gluous = 9 + 2

It 25 E massive = 3 x 3

Total :

1 + 9 . 2 + 3 .3 + (72+ 18) = 106 . 75

Cat energies E> Men ~150 GeV)

· We do not know if the universe

was ever that hot
,
but if it was

,

it would have qu -100



· Particle Kinetics (Boltmann equation)
We now study how a gas of
particles approaches equilibrium in

an expanding universe
.

That is
,
we

first assume a generic distribution

function lisotropic and homogeneous (

n(P , H

-

P= physical momentum
.

In the absence

o interactions comoving momentum is

conserved:

X = ax- => Pp = E

n(p ,t) = no (p-d

Let's derive the infinitesimal change :
on n' . p.- I

& +
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If we integrate over p we get

N-fDHp
WidD . p3o = 3 9dp -p = 3/dpeG

da

#
+ 3HN =0

This was for non-interacting particles.
Note that they don't stay in

a thermal state (generically)




